W-band Assessment Agenda

- Review minutes, in particular, restatement of Q3 goals (Teitelbaum)
- W-band receiver status (Seiffert)
- 10 Gbit/sec feasibility study (Gaier)
- End-to-end phase stability measurement (Durgadas Bagri)
 - Prospects for quick and dirty injection of a single tone
 - Development of a W-band pulse-cal(phase cal) system
- Observational strategy for achieving pointing objectives (all)
- FY002 proposal planning (all)

W-band Assessment Task Plan Summary

- Phase-stabilizing the W-band receiver
- Completing development of computer-controlled noise temperature calibration instrumentation
- Optimizing the noise temperature performance of the W-band receiver on the telescope
- Assessing the W-band pointing capability with point sources using the existing radio astronomy and antenna calibration toolkit
- Measuring the aperture efficiency as a function of azimuth and elevation
- Applying the raster scan methodology to characterize the RF beam at W-band and to develop improved blind-pointing models. The raster scan will be studied systematically at X-, Ku- and W-band with the goal of understanding tradeoffs as a function of frequency and optimizing the technique for W-band (and Ka-band).
- Assessing the capability of the DSS-13 antenna servo system to support precise W-band tracking
- Reviewing existing W-band telecommunication literature in light of DSS-13 capability and other new technology
- Performing an updated W-band link analysis
- Studying the feasibility, cost, and required equipment of a laboratory demonstration of a W-band 10 Gbit/second data link

W-band Assessment Restatement of Q3 Goals

Receiver development

- Repair receiver, add first lo-stage phase lock, and return to DSS-13
 - Measure phase stability?
- Decide on noise diode approach and implement
- New: ready for pulse-cal tone injection?

Pointing and Efficiency

- Detect point sources
- Develop a "detectable" point source catalog
- Apply open-loop conscan technique to detectable point sources
- Obtain initial first and second order systematic error models
- Measure residuals with respect to SEMODs
- Complete aperture efficiency measurement as a function of elevation
- Acquire data for antenna servo system assessment
- Perform initial raster scan measurements at X-band

Telecommunications

- Perform link budget study
- Perform 10 Gbits/sec "feasibility study"

June 21, 2001 3

W-band Assessment FY002 proposal planning

- Expand the scope of W-band assessment (1/3 work year per "critical" doer)
- The vision sensitivity-optimized, adequately efficient, gravitycompensated, phase-calibrated, well-pointed capability. Routinely operating for VLBI and single-dish continuum and spectroscopic observations.
- Ideas
 - Efficiency improvement/gravity compensation
 - Realign main reflector panels
 - Utilize full 34 m
 - Panel replacement study
 - Patch perforations
 - Replace panels?
 - · Optimize feed horn illumination
 - · Stage receiver beneath the DFP
 - Future subreflector study (size and support optimization, deformable)
 - AFCS-like signal-combiner
 - Field prototype of future DSN feedback-driven pointing system (what is it??)
 - W-band pulse calibration (phase calibration) system
 - Telecommunications
 - Mature 10 Gbits/sec laboratory demonstration
 - · Downlink telemetry demonstration
 - Atmospheric statistics study